

Programming Guide

2

Contents

Overview ... 4

Tutorials .. 6

1) Open a PDF File .. 6

2) Go to a specific page ... 6

3) Zoom a page .. 6

4) Rotate a page ... 6

5) Print a PDF document .. 7

6) Hide or show UI elements .. 7

7) Iterate the whole outline tree ... 7

8) Search a PDF document.. 7

9) Annotations (*) ... 7

10)
#
Form Application ... 7

FoxitReaderSDK control ... 9

Properties .. 9

FilePath ... 9

Password ... 9

PageCount... 9

CurPage .. 9

Rotate .. 9

Zoomlevel .. 10

CurrentTool .. 10

Printer .. 11

bHasFormFields (*) ... 12

DocumentInfo .. 12

bHighlightFormFields (*) ... 12

FormFieldsHighlightAlpha (*) .. 12

FormFieldsHighlightColor (*) ... 12

ActiveXVersion .. 13

Methods ... 14

1) Open and close PDF File ... 14

2) Viewing ... 16

3) Navigation ... 19

4) Search .. 23

5) Outline .. 25

6) Save.. 25

7) Annotation .. 26

8) Form ... 27

9) Drawing... 28

10) Running Javascript ... 29

11) HyperLink ... 29

12) Others ... 30

Programming Guide

3

Events .. 37
(#)

PDFForm .. 42

Method .. 42

PDFFormField .. 45

Properties ... 45

Method .. 50

PDFPrinter .. 54

Properties ... 54

Methods .. 56

PDFOutline.. 57

Methods .. 57

PDFDocumentInfo.. 58

Properties ... 58

FindResult... 60

Methods .. 60

Programming Guide

4

Overview

Foxit Reader SDK ActiveX is a visual programming component that offers PDF

displaying capability with minimal resource demand and redistribution size. It can be

easily integrated into a wide range of applications.

Foxit Reader SDK ActiveX uses the same parsing and rendering engine as Foxit Reader.

Therefore it can display PDF files with the same high quality and fast speed as Foxit

Reader.

Compared to the DLL version of Foxit SDK, the ActiveX version is much easier to use and

has much more rich features built inside. A programmer can simply drag and drop the

component into their application and instantly add PDF displaying functionality. In addition,

the ActiveX allows users to navigate, zoom, rotate, scroll and print out PDF documents.

Version 3.0 incorporates many advanced PDF features. It supports annotation and allows

users to fill out, import or export PDF form data. Version 3.0 also introduces more

functions and events, giving programmers flexible control over the component and more

access to the PDF documents.

Foxit offers two versions of ActiveX 3.0 (standard and professional), which are provided

with different GUID numbers that allows you to register both versions onto the same

computer and access them with their own GUID. Compared with the professional version,

the standard version doesn’t include the following features: creating/editing annotation,

importing/exporting form data, running JavaScript, converting PDF to text, etc. Based on

your requirement needs you are able to pick and choose which ActiveX 3.0 version would

be best for your application. You can purchase either the standard or professional version

online. For the Form Module, which is a new module in Version 3.0, please contact

sales@foxitsoftware.com for licensing details. In this developer’s guide, all the properties

and functions marked with an asterisk (*) are available only in the professional version.

Foxit Reader SDK ActiveX runs on Windows 95/NT or later. This is a standalone

component and does not require any extra PDF software installed. Please note a user

might need to have administrator rights to register the ActiveX under Windows

successfully.

There are several complete demo programs written in different languages, including

Visual Basic, Visual C++, Delphi, showing how to use the properties and methods of the

ActiveX. To download these methods please visit www.foxitsoftware.com.

Based on the professional version, Foxit Reader SDK AcitveX 3.0 adds many new

interfaces to support PDF Form Fields, which will allow users to add, delete, import or

export, form data in their PDF documents. The Form Module is licensed separately from

ActiveX 3.0 Professional. If you would like to use this module, please contact us at

sales@foxitsoftware.com.

http://www.foxitsoftware.com/pdf/rd_intro.php
mailto:sales@foxitsoftware.com
http://www.foxitsoftware.com/
mailto:sales@foxitsoftware.com

Programming Guide

5

UNLOCK Code: If you have purchased Foxit Reader SDK ActiveX and received the full

version of the ActiveX and the unlock code, you should call UnLockActiveX or

UnLockActiveXEx functions once inside your program before you call ANY other functions

of the ActiveX. This function is described in the Reference section. You don’t need to call

this function if you just want to evaluate the ActiveX.

GUID for standard version：DB2189DF-ABF4-445A-A4E5-BF32F2CEA4D9

GUID for professional version：358327D8-B2C5-402f-B1F5-DD89FAA68B26

Programming Guide

6

Tutorials

The Foxit Reader SDK ActiveX control comes with a single OCX file. To install it, please

use command "regsvr32 foxitreader_ax.ocx". You may need to specify the proper path if

foxitreader_ax.ocx is not stored in current directory.

The ActiveX control handles user interface for you. It also supplies multiple properties and

methods so that your application is able to control the ActiveX.

The following is a example, suppose we had already created an ActiveX control called

FoxitReaderSDK.

1) Open a PDF File

 We will open a PDF document named “testdoc.pdf”

// NOTE: If you are evaluating ActiveX, you don’t need to unlock it,

// then evaluation marks will be shown on all PDF pages.

// For paid customers, please unlock the ActiveX first.

FoxitReaderSDK.UnLockActiveX(“license_id”,”unlock_code”);

FoxitReaderSDK.OpenFile(“testdoc.pdf”,””);

2) Go to a specific page

We will go to the third page of the document

FoxitReaderSDK.GoToPage(2). //The index of first page is 0.

3) Zoom a page

If you want to show a PDF page with its original size, you can use the following code

in VC:

FoxitReaderSDK.SetZoomLevel(0);

Or

FoxitReaderSDK. SetZoomLevel(100);

If you want to set the zoom factor to 200%, use the following code:

FoxitReaderSDK. SetZoomLevel(200);

For more information, see Function Reference section of this guide.

4) Rotate a page

A PDF page can be displayed in four directions: upright, rotated 90 degree, rotated

180 degree, or rotated 270 degree. To display it in different direction, you only need to

call “SetRotate” () to change the Rotate property.

If you want to rotate the page (90 degrees) clockwise, you can use the following code

in VC:

FoxitReaderSDK. SetRotate(1);

Programming Guide

7

5) Print a PDF document

What you need to do is call “PrintWithDialog” method, a print dialog will pop up

and you will be able to specify parameters and then print out the PDF document. If

you want to print without popping up a dialog, you need to use the PDFPrinter

interface.

6) Hide or show UI elements

You can call “ShowToolBar” to show or hide the toolbar. Likewise, you may call

“ShowBookmark” to show or hide the bookmark panel and call “ShowStatusBar” to

show or hide the status bar. If you prefer to build your own toolbar, you may hide the

built-in ActiveX toolbar and then create your own outside the ActiveX.

7) Iterate the whole outline tree

You can call “GetOutlineFirstChild” or “GetOutlineNextSibling” to iterate the

whole outline tree, allowing you to view the outline information from PDFOutline

Interface.

8) Search a PDF document

You can call “FindFirst” to find the first instance of the given text in the whole

document. If no occurrence is found, then the function returns 0. If an occurrence is

found, the function returns a nonzero value and the occurrence will be highlighted.

Select “FindNext” again to search for the next occurrence.

If you want to search for text inside PDF files without opening and displaying

them, you may use the “FindFileFirst” or “FindFileNext”.

9) Annotations (*)

End users can draw lines, circles and other shapes on a PDF document by using

different markup tools. Your application may also change “CurrentTool” property

programmatically, for example, to the “Line Tool”.

10) #Form Application

In version 3.0, Foxit ActiveX provides an interface for PDF forms. By calling

“GetCurrentForm”, you can obtain the IForm interface pointer for the current PDF

document. Then you can use properties and methods in IPDFForm and

IPDFFormField interface classes to perform actions to PDF forms. The following code

shows how to add a form button in a PDF page:

CPDFformField button1 =

form1.AddField("button1","button",m_nCurPage,0,0,55,30);

button1.SetButtonCaption("N","Normal");

button1.SetButtonCaption("R","Rollover");

button1.SetButtonCaption("D","Down");

button1.SetBehavior("push"); // push;Invert; None; Outline;

button1.SetTooltip("reset all form");

Programming Guide

8

button1.SetTextFont("Courier");

button1.SetTextSize(15);

button1.SetJavaScriptAction("down","app.alert(\"Mouse Down!\")");

Programming Guide

9

FoxitReaderSDK control

This section describes all properties and methods exposed by ActiveX. Please note that

the reference shows everything in C syntax. If you use a programming language other than

C/C++, you have to follow the syntax of that language.

Note: The functions marked with the (*) only apply to the professional version.

Properties

FilePath

Type:

BSTR, read-only

Description:

Full path to the current open PDF file. If no PDF file is opened, the property is an empty

string. By using function GetFilePath, you can get the value of FilePath (this function can only

be used in VC).

Password

Type:

BSTR, read-only

Description:

Password for the PDF. By calling function GetPassword, you can get the password of this

document (this function can only be used in VC).

PageCount

Type:

long, read-only

Description:

Total number of pages in the current open PDF file. By calling GetPageCount method, you

can get the total number of pages in current document (this function can only be used in VC).

CurPage

Type:

long, read-only

Description:

Index of the current page of the PDF file. Page index starts from zero for the first page. The

function GetCurPage makes available to get current page’s index (this function can only be

used in VC).

Rotate

Type:

short, read and write

Programming Guide

10

Description:

Current rotate orientation, the value can be one of the following:

0 (normal);

1 (rotated 90 degrees clockwise);

2 (rotated 180 degrees);

3 (rotated 90 degrees counter-clockwise).

You can set or get the value of Rotate by calling function SetRotate or GetRotate (these

function can only be used in VC).

Zoomlevel

Type:

long, read and write

Description:

Normally, the value of this zoom factor is between 10 and 1600. You may also use the

following special values:

0=displaying the page in actual page size, this is the same as setting zoom level to

100%.

1=displaying the page with proper zoom level so that the whole page can be fit into the

client window.

2=displaying the document with proper zoom level so that the width of the page fit to the

 client window.

 To set or get the value of Zoomlevel, you can call function SetZoomlevel or GetZoomlevel

(these function can only be used in VC).

CurrentTool

Type:

BSTR, read and write

Description:

Read and set the current tool. The value can be set to one of following strings:

“Hand Tool”

“ZoomOut Tool”

“ZoomIn Tool”

“Select Text Tool”

“Find Text Tool”

“Snapshot Tool”

“Typewriter”(*)

“Loupe Tool”(*)

“Magnifier”(*)

“Annot Tool” (*)

“Rectangle Link Tool” (*)

“Quadrilateral Link Tool” (*)

“Arrow Tool” (*)

“Line Tool” (*)

Programming Guide

11

“Dimension Tool”(*)

“Square Tool” (*)

“Rectangle Tool” (*)

“Circle Tool” (*)

“Ellipse Tool” (*)

“Polygon Tool” (*)

“Cloudy Tool” (*)

“Polyline Tool” (*)

“Pencil Tool” (*)

“Rubber Tool” (*)

“Highlight Tool” (*)

“Underline Tool” (*)

“Strikeout Tool” (*)

“Squiggly Tool” (*)

“Replace Tool” (*)

“Note Tool” (*)

“Push Button Tool” (*)

“Check Box Tool” (*)

“Radio Button Tool” (*)

“Combo Box Tool” (*)

“List Box Tool” (*)

“Text Field Tool” (*)

“Distance Tool” (*)

“Perimeter Tool” (*)

“Area Tool” (*)

“Image Tool”(*)

“FileAttachment Tool” (*)

“Attach a file” (*)

“CallOut” (*)

“Sound Tool” (*)

“Movie Tool” (*)

 And so on.

You can call CountTools to learn how many tools are available in the current version of

ActiveX, and then call GetToolByIndex to get the tool names. You can also call GetCurrentTool

or SetCurrentTool to get or set current tool’s name (these function can only be used in VC).

Printer

Type:

IPDFPrinter, read-only

Description:

Printer property returns an IPDFPrinter interface that you can use for managing the printer

and sending the printout. In your application, you can use function GetPrinter to get this

property (this function can only be used in VC).

Programming Guide

12

bHasFormFields (*)

Type:

BOOL , read-only

Description:

If current document contains form fields, then bHasFormFields is True; otherwise, it is

False. To get the value of bHasFormFields, you can use function GetBHasFormFields in your

own application (this function can only be used in VC).

DocumentInfo

Type:

IPDFDocumentInfo*, read-only

Description:

Function GetDocumentInfo returns an IPDFDocumentInfo interface which you can use to

retrieve document information such as Author, Creator, Creation Date, Keywords, ModDate,

Producer Subject and Title (this function can only be used in VC).

bHighlightFormFields (*)

Type:

BOOL , read and write

Description:

Setting bHighlightFormFields to True will highlight all interactive form fields thereby having

a better visual effects. By calling function SetBHighlightFormFields or GetBHighlightFormFields,

you can set or get the value which indicates whether to highlight all interactive form fields or not

(these function can only be used in VC).

FormFieldsHighlightAlpha (*)

Type:

short, read and write

Description:

Represent 256 levels of transparency of form field highlight color.

0=transparent; 255=opaque.

You can set or get access to the value of highlight alpha of form fields by using function

SetFormFieldsHighlightAlpha or GetFormFieldsHighlightAlpha (these function can only be used

in VC).

FormFieldsHighlightColor (*)

Type:

OLE_COLOR, read and write

Description:

Represent highlight color of form fields. You can call SetFormFieldsHighlightColor or

GetFormFieldsHighlightColor function to set or get the highlight color of form fields (these

mk:@MSITStore:C:\Program%20Files\Gnostice\PDFtoolkit%20ActiveX.NET%20Trial\Help\PDFtoolkit.chm::/author.htm
mk:@MSITStore:C:\Program%20Files\Gnostice\PDFtoolkit%20ActiveX.NET%20Trial\Help\PDFtoolkit.chm::/creator.htm
mk:@MSITStore:C:\Program%20Files\Gnostice\PDFtoolkit%20ActiveX.NET%20Trial\Help\PDFtoolkit.chm::/creationdate.htm
mk:@MSITStore:C:\Program%20Files\Gnostice\PDFtoolkit%20ActiveX.NET%20Trial\Help\PDFtoolkit.chm::/keywords.htm
mk:@MSITStore:C:\Program%20Files\Gnostice\PDFtoolkit%20ActiveX.NET%20Trial\Help\PDFtoolkit.chm::/moddate.htm
mk:@MSITStore:C:\Program%20Files\Gnostice\PDFtoolkit%20ActiveX.NET%20Trial\Help\PDFtoolkit.chm::/producer.htm
mk:@MSITStore:C:\Program%20Files\Gnostice\PDFtoolkit%20ActiveX.NET%20Trial\Help\PDFtoolkit.chm::/subject.htm
mk:@MSITStore:C:\Program%20Files\Gnostice\PDFtoolkit%20ActiveX.NET%20Trial\Help\PDFtoolkit.chm::/title.htm

Programming Guide

13

function can only be used in VC).

ActiveXVersion

Type:

BSTR, read-only

Description:

Get the Version info of ActiveX control. You can get the version info of current registered

ActiveX by calling GetActiveXVersion function (this function can only be used in VC).

Note: In VC, you have to use these methods mentioned above to implement setting

or getting corresponding properties; in other languages, you can directly get access

to these properties. For example:

code in VC:

FoxitReaderSDK.GetFilePath();

// the above statement returns the file path of current open PDF file. But you can directly

// use FilePath to get current open PDF file path in other languages.

Code in VB, javascript, C# etc:

FoxitReaderSDK.FilePath

Programming Guide

14

Methods

1) Open and close PDF File

OpenFile

Open a PDF file from a local disk or from an http server.

Prototype:

BOOL OpenFile (BSTR FilePath, BSTR Password)

Parameters:

FilePath - Path to the PDF file or URL to a HTTP server.

Password - Password for the PDF. If no password, specify an empty string.

Return value:

Non-zero if the PDF file is successfully opened, otherwise it is zero.

Comment:

The file will not be locked if it is opened by this method. It can be opened by other program.

OpenMemFile

Open a PDF file that is stored in memory.

Prototype:

BOOL OpenMemFile(long pBuffer, long Size, BSTR Password)

Parameters:

pBuffer - Caller-supplied pointer to a buffer containing PDF data .

Size - Size of the buffer pointed to by pBuffer.

Password - Password for the PDF. If no password, specify an empty string.

Return value:

Nonzero if the PDF file is successfully opened, otherwise it is zero.

OpenBuffer

Open a PDF file from the buffer.

Prototype:

BOOL OpenBuffer(VARIANT Buffer, long size, BSTR password);

Parameters:

Buffer - Byte array containing the PDF.

Size - Size of the byte array.

Password - Password to open the PDF document

Return value:

Nonzero if the PDF file is successfully opened, otherwise it is zero.

OpenStream

Open a PDF file from the IStream interface..

Prototype:

BOOL OpenStream (IStream* Stream, BSTR Password)

Parameters:

Stream - An IStream interface.

Password - Password for the PDF. If no password, specify an empty string.

Programming Guide

15

Return value:

Nonzero if the PDF file is successfully opened, otherwise it is zero.

OpenCustomFile

Open a PDF document from a custom access descriptor. When your program calls this

method, ActiveX will trigger the CustomFileGetSize and CustomFileGetBlock events.

Inside the event handler, your program will open the PDF document from a custom format;

return the file size and block of data. See the description of CustomFileGetSize and

CustomFileGetBlock for more details.

Prototype:

BOOL OpenCustomFile(BSTR Password)

Parameter:

Password - Password for the PDF. If no password, specify an empty string.

Return value:

Non-zero if the PDF file is successfully opened, otherwise it is zero.

OpenFtpFile

Open a PDF file from an FTP server.

Prototype:

BOOL OpenFtpFile(BSTR ftpName,BSTR username, BSTR userPassword,

 long port,BSTR filePath, BSTR filePassword, boolean Passive);

Parameter:

ftpName - FTP server name

userName - FTP Username

userPassword - FTP password

port - Port on FTP server

filePath - FTP file Path

filePassword - PDF file password

Passive - Paasive or active connection

Return value:

One (1) if the PDF file is successfully opened, otherwise it is zero (0).

UploadCurFileToFTP(*)

Upload the current PDF file to an FTP server

Prototype:

BOOL UploadCurFileToFTP(BSTR ftpName, BSTR userName, BSTR userPassword,

long port, BSTR FilePath);

Parameter:

ftpName - FTP server name

userName - FTP Username

userPassword - FTP password

port - Port on FTP server

filePath - FTP file Path

Programming Guide

16

Return value:

One (1) if the PDF file is successfully opened, otherwise it is zero (0).

CloseFile

 Close the currently loaded PDF file.

Prototype:

Void CloseFile()

Parameter:

[None]

Return value:

[None]

SetFileStreamOption

Set the file stream option when opening the file.

Prototype:

Void SetFileStreamOption(BOOL bFileStream);

Parameter:

bFileStream - A BOOL value indicating the file stream option.

Return value:

[None]

Comment:

Loading the stream contents into memory will improve performance if the file is frequently

accessed. However it will cause more memory consumption.

2) Viewing

ShowTitleBar

Show or hide the title bar;

Prototype:

void ShowTitleBar(BOOL bShow);

Parameters:

bShow - If this parameter is FALSE, the title bar will be invisible.

If this parameter is TRUE, the title bar will be visible.

Return value:

[None]

ShowToolBar

Show or hide the toolbar;

Prototype:

void ShowToolBar(BOOL bShow);

Parameters:

bShow - If this parameter is FALSE, the toolbar will be invisible.

If this parameter is TRUE, the toolbar will be visible.

Return value:

[None]

Programming Guide

17

ShowToolbarButton

Show or hide the toolbar button

Prototype:

void ShowToolBarButton (short nIndex, BOOL bShow)

Parameters:

nIndex - The index of the button.

bShow - If this parameter is FALSE, the toolbar button will be invisible.

If this parameter is TRUE, the toolbar button will be visible.

Return value:

[None]

ShowBookmark

Show or hide the bookmark (outline) panel. Bookmark and outline refer to the same

concept and they are used interchangeably in this document.

Prototype:

void ShowBookmark(BOOL bShow)

Parameters:

bShow - If this parameter is FALSE, the bookmark panel will be invisible.

If this parameter is TRUE, the bookmark panel will be visible.

Return value:

[None]

ShowStatusBar

Show or hide the status bar

Prototype:

void ShowStatusBar(BOOL bShow);

Parameters:

bShow - If this parameter is FALSE, the Status Bar will be invisible.

If this parameter is TRUE, the Status Bar will be visible.

Return value:

[None]

ShowFormFieldsMessageBar(*)

 Show or hide the FormFieldsMessageBar.

Prototype:

void ShowFormFieldsMessageBar(BOOL bShow)

Parameters:

bShow - If this parameter is FALSE, the FormFieldsMessageBar will be invisible.

If this parameter is TRUE, the FormFieldsMessageBar will be visible.

Return value:

[None]

Programming Guide

18

SetLayoutShowMode

Set the page layout. A PDF document can be displayed as n columns by m rows. No matter

what the facing count number is, when the page layout is set to MODE_SINGLE, the

ActiveX window will display one row at a time, when the page layout is set to

MODE_CONTINUOUS, the window will be able to display adjacent rows at the same time.

Prototype:

Void SetLayoutShowMode (BrowseMode nShowMode, short nFacingCount);

Parameters:

nShowMode - the value can be set as following:

MODE_SINGLE =0.

MODE_CONTINUOUS =1.

nFacingCount - Number of columns.

Return value:

[None]

SetFacingCoverLeft

When in browser facing mode, this function will set cover page of the PDF document to be

rendered on the left.

Prototype:

 Void SetFacingCoverLeft (BOOL bLeft)

Parameters:

bLeft - A BOOL value indicating whether to set cover page to be rendered

on the left.

Return value:

[None]

ShowNavigationPanels

Toggle between the navigation panel

Prototype:

BOOL ShowNavigationPanels(BOOL bShow)

Parameters:

bShow - TRUE shows the navigation panel, FALSE hides it.

Return value:

Returns True if successful, False otherwise.

EnableToolTip

Toggle between the displaying of Tool Tips.

Prototype:

BOOL EnableToolTip (BOOL bEnable)

Parameters:

bEnable - TRUE shows the Tool Tips, FALSE hides them

Return value:

Returns True if successful, False otherwise.

Programming Guide

19

GetLayoutShowMode

Obtain the current layout mode.

Prototype:

Void GetLayoutShowMode(short* pnShowMode, short* pnFacingCount)

Parameters:

pnShowMode - Toggles to continuous page display

pnFacingCount - Toggles to page facing

Return value:

[None]

3) Navigation

ExistForwardStack

Detect the existence of next view.

Prototype:

BOOL ExistForwardStack ();

Parameters :

[None]

Return value:

If next view exists, then it will return true. Otherwise, it will return false.

Comment:

Quite often, when a user navigates within a PDF file, he would like to go back to a previous

reading point. View is a concept that defines certain reading point or displaying status.

Certain user actions will create new views. For example, if a user turns to a new page, and

then zoom in the page, these two actions will create two new views. A program may call

this group of methods to allow user to jump among different views conveniently.

GoForwardStack

Jump to the next view.

Prototype:

Void GoForwardStack ();

Parameters:

[None]

Return value:

[None]

ExistBackwardStack

Detect the existence of previous view.

Prototype:

BOOL ExistBackwardStack ();

Parameters:

[None]

Return value:

If previous view exists, then it will return true. Otherwise, it will return false.

Programming Guide

20

GoBackwardStack

Jump to previous view,

Prototype:

void GoBackwardStack ();

Parameters:

[None]

Return value:

[None]

SetViewRect

Display a rectangle of current PDF page.

Prototype:

Void SetViewRect (float Left, float Top, float Width, float Height);

Parameters:

Left - The horizontal coordinate of the top left corner.

Top - The vertical coordinate of the top left corner.

Width - The width of the rectangle.

Height - The height of the rectangle.

Return value:

[None]

Comment:

This function will show a rectangle of current PDF page. The coordinate here is PDF

coordinate, not device coordinate. And the unit is PDF point. The function will keep the

position and size of ActiveX window unchanged and adjust the position and the zoom

factor of current PDF page so that the designate rectangle of current PDF page will be

shown fully inside the ActiveX window. A typical application is: the end user use the mouse

to click and drag a rectangle and then release the mouse, the program will call

ConvertClientCoodToPageCood to convert the mouse coordinates into PDF coordinates

and then call SetViewRect to display the specified area in full view.

ConvertClientCoordToPageCoord

Converts a point in ActiveX control window's client co-ordinates into PDF page coordinate.

Prototype:

BOOL ConvertClientCoordToPageCoord (long nClientX, long nClientY,

long* pnPageNum, float* pPageX, float* pPageY);

Parameters:

nClientX - X coordinate in the ActiveX control window's client

 co-ordinates, in pixels

nClientY - Y coordinate in the ActiveX control window's client

co-ordinates, in pixels

pnPageNum - For returning page number in which the given point falls on

pPageX - For returning x coordinate of the point inside the PDF page

(in PDF co-ordinate system)

pPageY - For returning y coordinate of the point inside the PDF page

Programming Guide

21

(in PDF co-ordinate system)

Return value:

Return value indicates whether the conversion is successful. The client area contains the

PDF page being shown as well as some grey background. If the point is located in the grey

background, the conversion will fail.

ConvertPageCoordToClientCoord

Converts PDF page coordinates to the coordinates inside ActiveX control window's client

area.

Prototype:

BOOL ConvertPageCoordToClientCoord (long nPageNum, float dPageX, float dPageY,

long* pnClientX, long* pnClientY);

Parameters:

nPageNum - page number

dPageX - X coordinate inside the PDF page (in PDF co-ordinate system)

dPageY - Y coordinate inside the PDF page (in PDF co-ordinate system)

pnClientX - For returning X coordinate in the ActiveX control window's client area. A

negative result indicates that the point is outside the ActiveX control

window's client area.

pnClientY - For returning Y coordinate in the ActiveX control window's client area. A

negative result indicates that the point is outside the ActiveX control

window's client area.

Return value:

Return value indicates whether the conversion is successful. If the document is not opened

properly or if the page number is incorrect, then the return value will be false. Otherwise,

the return value will be true.

GotoPageDest

Go to a specified position in a PDF document.

Prototype:

Void GotoPageDest (ILink_Dest * link_dest);

Parameters:

link_dest - An ILink_Dest interface you get from event OnHyperLink .

Return value:

[None]

GoToPagePos

 Go to a specified position in a PDF document.

Prototype:

 Void GoToPagePos (long nPage, float PageX, float PageY);

Parameters:

nPage - Index of the page you want to view.

PageX - Specify the x coordinate of the position inside the PDF page

which index is specified by nPage.(in PDF co-ordinate system)

Programming Guide

22

PageY - Specify the y coordinate of the position inside the PDF page

 which index is specified by nPage.

Return value:

[None]

GetVisibleLeftTopPage

Get the page number of the view at the top left side

Prototype:

Long GetVisibleLeftTopPage ();

Parameter:

[None]

Return value:

the page index which showed on the left top.

ScrollView

Scroll the current view by dx, dy, the unit is device pixel.

rototype:

Void ScrollView (long dx, long dy);

Parameters:

dx - The horizontal distance of the scrolling action.

dy - The vertical distance of the scrolling action.

Return value:

[None]

GetScrollLocation

Get the current scroll location in current page.

rototype:

long GetScrollLocation (long *dx, long *dy);

Parameters:

dx - For returning x coordinate of the current scroll location

dy - For returning y coordinate of the current scroll location

Return value:

The index of current page

GoToNextPage

Traverse to the next page of the currently open PDF document.

Prototype:

Void GoToNextPage ();

Parameters:

[None]

Return value:

[None]

Note:

 This function will be removed in further version and you can use function GoToPage

Programming Guide

23

instead.

GoToPrevPage

Traverse to the previous page of the currently open PDF document.

Prototype:

Void GoToPrevPage ();

Parameters:

[None]

Return value:

[None]

Note:

 This function will be removed in further version and you can use function GoToPage

Instead

4) Search

FindFirst

Search the document for a string. If the function finds the first occurrence of the string, it will

jump to the page, update CurPage property, highlight the occurrence and return true value.

Otherwise it will return false.

Prototype:

BOOL FindFirst (BSTR search_string, BOOL bMatchCase, BOOL bMatchWholeWord)

Parameters:

SearchString - The string you want to search.

BMatchCase - Case sensitive or not.

BMatchWholeWord - Search for whole word only or not.

Return value:

Nonzero if an occurrence of the string is found, otherwise it will be zero.

FindNext

Search for the next occurrence of the given string in the whole document. If the ActiveX find

the next occurrence, it will jump to the page, update CurPage property, highlight the

occurrence and return true value. Otherwise, it will return false. Please note that FindNext

will use the same searching criteria specified in the FindFirst method, including

bMatchCase, bMatchWholeWord. If bSearchDown is true, then the search goes down the

document. If bSearchDown is false, then the search goes up.

Prototype:

BOOL FindNext (BOOL bSearchDown);

Parameters:

bSearchDown - Search down (True) or up (False).

Return value:

If next occurrence is found, the return value will be non-zero, otherwise it will be zero.

FindFileFirst

Search a file for a string and returns an IFindResult interface if it finds the string. Otherwise

Programming Guide

24

it will return null. This method allows you to search a file without first opening it. For

example, if you want to search for a keyword in all the PDF files inside a folder, you may

iterate all the PDF files inside that folder and search them one by one for the keyword. If

the ActiveX find an occurrence inside a PDF file, it will return IFindResult which contains all

the details of the occurrence. Then you can use GoToSearchResult to open the file, jump to

the page and highlight the occurrence.

Prototype:

IFindResult* FindFileFirst(BSTR file_path, BSTR search_string,BOOL bMatchCase,

BOOL bMatchWholeWord)

Parameters:

file_path - Path to the PDF file.

search_string - The string you want to search.

bmatchCase - Case sensitive or not.

BMatchWholeWord - Search for whole word only or not.

Return value:

An IFindResult interface if an occurrence is found. Otherwise it will be null.

FindFileNext

 Search for the next occurrence of the given string in the file specified by FindFileFirst.

Prototype:

IFindResult * FindFileNext ();

Parameters:

[None]

Return value:

If the next occurrence is found, the return value will be IFindResult. Otherwise it will be null.

GoToSearchResult

Display and highlight the search result.

Prototype:

Void GoToSearchResult (IFindResult* findresult);

Parameters:

Findresult - An IFindResult interface returned by FindFileFirst, or FindFileNext .

Return value:

[None]

SearchAndHighlightAllTextOnPage(*)

Highlight all instance of a given keyword in a specified page,

Prototype:

void SearchAndHighlightAllTextOnPage(BSTR searchstring, BOOL bMatchCase,

BOOL bMatchWholeWord,long PageNo);

Parameters:

PageNo - Number of the page you want to search.

Return Value:

[None]

Programming Guide

25

5) Outline

GetOutlineFirstChild

Get first child item of the current outline.

Prototype:

IPDFOutline* GetOutlineFirstChild(IPDFOutline* Outline)

Parameters:

Outline - The parent item whose first child item will be returned.

If you want to get the root item of the outline tree, set null as the

parameter value.

Return value:

If the specified item has child items, then the first child item will be returned.

Otherwise null will be returned.

GetOutlineNextSibling

 Get next sibling item.

Prototype:

IPDFOutline* GetOutlineNextSibling (IPDFOutline* Outline)

Parameters:

Outline - The outline item whose next sibling will be returned

Return value:

If the next sibling item exists, it will be returned. Otherwise, null will be returned.

6) Save

SaveAs

Save the currently loaded PDF document into a file.

Prototype:

Void SaveAs (BSTR FileName)

Parameters:

FileName - Specifies the name of the file to be saved.

Return value:

[None]

Save

Save the currently loaded PDF document.

Prototype:

Void Save ()

Parameters:

[None]

Return value:

[None]

SaveToStream

Programming Guide

26

Save the currently loaded PDF document into memory.

Prototype:

IStream* SaveToStream()

Parameters:

[None]

Return value:

An IStream interface supports reading and writing data to stream objects which contain the

PDF file data.

7) Annotation

ExportAnnotsToFDFFile(*)

Export comments from current document to a Form Data Format (FDF) file.

Prototype:

BOOL ExportAnnotsToFDFFile(BSTR FDFFileName)

Parameters:

FDFFileName - The FDF file path.

Return Value:

 Return value indicates whether the operation is successful.

ImportAnnotsFromFDFFile(*)

Import comments from a Form Data Format (FDF) file to current document

Prototype:

BOOL ImportAnnotsFromFDFFile(BSTR FDFFileName)

Parameters:

FDFFileName - The FDF file path.

Return Value:

 Return value indicates whether the operation is successful.

SetBDrawAnnot(*)

Set the annotation flag.

Prototype:

void SetBDrawAnnot(BOOL bDrawAnnot);

Parameters:

bDrawAnnot - If this parameter is true, it can draw annotation.

 If this parameter is false, it can not draw annotation.

Return Value:

[None]

ShowAllPopup (*)

 Popup all annotations.

Prototype:

Void ShowAllPopup (BOOL bShow);

Parameters:

bShow - If this parameter is true, the annotation will pop up.

Programming Guide

27

Return Value:

[None]

8) Form

ExportFormToFDFFile (*)

Export PDF form data to a Form Data Format (FDF) file.

Prototype:

BOOL ExportFormToFDFFile (BSTR FDFFileName)

Parameters:

FDFFileName - The FDF file path.

Return Value:

Return value indicates whether the operation is successful.

ImportFormFromFDFFile (*)

Import data from a Form Data Format (FDF) file into PDF forms.

Prototype:

BOOL ImportFormFromFDFFile(BSTR FDFFileName)

Parameters:

FDFFileName - The FDF file path.

Return Value:

Return value indicates whether the operation is successful.

FindFormFieldsTextFirst (*)

Search the text in form fields.

Prototype:

BOOL FindFormFieldsTextFirst (BSTR searchstring, BOOL bMatchCase);

Parameters:

Searchstring - The string you want to search.

bMatchCase - Case sensitive or not.

Return value:

Return value indicates whether the searched string is found.

FindFormFieldsTextNext (*)

Search the text in form fields.

Prototype:

BOOL FindFormFieldsTextNext ()

Parameters:

[None]

Return value:

Return value indicates whether the searched string is found.

GetCurrentForm (#)

Obtain the pointer of the Form interface. This is needed to add new PDF Form elements.

Prototype:

Programming Guide

28

IPDFForm* GetCurrentForm()

Parameters:

[None]

Return value:

Returns the Form interface point if successful, Null otherwise.

9) Drawing

AddWaterMark (*)

Insert a text as watermark into the document.

Prototype:

BOOL AddWaterMark (short page, BSTR string, float left, float bottom,

short fontsize, OLE_COLOR fontcolor,

short textmode, short alpha, short rotate);

Parameters:

Page - The page number of the document to be Added watermark.

String - The text that is displayed as watermark.

Left - The horizontal X position in which the watermark is placed.

Bottom - The horizontal y position in which the watermark is placed

Fontsize - The text size.

Fontcolor - The text color.

Textmode - The value must be 0, 1, 2.

0 means fill the text,

1 means stroke the text,

2 means fill then stroke the text.

alpha - A number from 0 to 255, identifying the alpha value.

rotate - The angle through which the watermarks are to be rotated.

Return value:

Return value indicates whether the watermark is added.

AddImageObject (*)

Insert an image into the document.

Prototype:

BOOL AddImageObject (long nPage, float left, float bottom, float width,

float height, BSTR BmpFileName, short alpha, short rotate);

Parameters:

nPage - The page number of the document to be Added image.

left - The horizontal X position in which the watermark is placed.

Starting from 0 at the left-most pixel.

bottom - The horizontal y position in which the watermark is placed

Starting from 0 at the bottom-most scan line.

width - The width of the bitmap.

height - The height of the bitmap.

BmpFileName - The file path of the image.

alpha - A number from 0 to 255, identifying the alpha value.

Programming Guide

29

rotate - The angle through which the image are to be rotated.

Return Value:

Return value indicates whether the image is added.

10) Running Javascript

ShowDocJsDialog (*)

Popup Document Javascript Dialog.

Prototype:

void ShowDocJsDialog();

Parameters:

[None]

Return Value:

[None]

ShowJsConsoleDialog (*)

Popup Javascript Console Dialog.

Prototype:

void ShowJsConsoleDialog();

Parameters:

[None]

Return Value:

[None]

11) HyperLink

CountHyperLinks (*)

Compute the number of HyperLinks in a PDF page

Prototype:

short CountHyperLinks(short nPage);

Parameters:

nPage - the specific page number of the PDF file

Return Value:

Returns the link count if successful, 0 for no links, -1 for failure.

HighlightHyperLink (*)

Highlight a specific HyperLink in a PDF page

Prototype:

void HighlightHyperLink(short nPage, short nLinkIndex)

Parameters:

nPage - the specific page number

nLinkIndex - index of the HyperLink

Return Value:

[None]

Programming Guide

30

GetHyperLinkRect (*)

Obtain the position of a specific HyperLink

Prototype:

BOOL GetHyperLinkRect(short nPage, short nIndex, float* top, float* left,

 float* bottom, float* right)

Parameters:

nPage - the specific page number

nLinkIndex - index of the HyperLink

top - returned pointer for top coordinate

left - returned pointer for left coordinate

bottom - returned pointer for bottom coordinate

right - returned pointer for right coordinate

Return Value:

Returns True if successful, False otherwise.

GetHyperLinkInfo(*)

Obtain the link information of a specific HyperLink.

Prototype:

BOOL GetHyperLinkInfo(short nPage, short nIndex, BSTR* linktype,

 BSTR* linkdata, L PDISPATCH* linkdest)

Parameters:

nPage - the specific page number

nLinkIndex - index of the HyperLink

linktype - returned pointer containing the type of HyperLink

linkdata - returned pointer containing the String data of the HyperLink

linkdest - returned pointer containing the redirection destination of the HyperLink

Return value:

Returns True if successful, False otherwise.

EnableHyperLink(*)

Enable/Disable HyperLinks.

Prototype:

Void EnableHyperLink(BOOL bEnable)

Parameters:

bEnable - TRUE enables Hyperlinks, FALSE disables them.

Return value:

[None]

12) Others

GetSelectedText

Get currently selected text.

Prototype:

BSTR GetSelectedText ();

Parameters:

Programming Guide

31

[None]

Return value:

The text that has been selected.

OpenFileForPrinter

Print a PDF file without displaying it.

Prototype:

IPDFPrinter* OpenFileForPrinter(BSTR file_path)

Parameters:

file_path - Path to the PDF file (including file extension).

Return value:

Interface of IPDFPrinter that you can use to control the printer.

Highlight(*)

Highlight a specified rectangular region on the specified page of this document.

Prototype:

void Highlight(long nPageIndex, float left, float top, float right, float bottom)

Parameters:

nPageIndex - Number of the page where the specified rectangular region

is to be highlighted

left - X-coordinate of the top left corner of the rectangular region

top - Y-coordinate of the top left corner of the rectangular region

right - X-coordinate of the bottom right corner of the rectangular region

bottom - Y-coordinate of the bottom right corner of the rectangular region

Return value:

 [None]

RemoveAllHighlight (*)

 Remove all highlight in current open document.

Prototype:

void RemoveAllHighlight()

Parameters:

[None]

Return value:

[None]

GetPageText

Extract text content from a PDF page of the currently loaded PDF file.

Prototype:

BSTR GetPageText (long nPage)

Parameters:

nPage - Number of the page you want to extract text from.

Return value:

 The text that has been extracted.

Programming Guide

32

CountTools

Get the number of tools that can be used in the current version of ActiveX.

Prototype:

short CountTools()

Parameters:

[None]

Return Value:

Number of tools.

GetToolByIndex

Get the name of a tool.

Prototype:

BSTR GetToolByIndex (short nIndex)

Parameters:

nIndex - The range of nIndex is: 0 <= nIndex< CountTools().

Return Value:

The name of the tool is returned.

GetDocPermissions

Get file permission flags of the document.

Prototype:

long GetDocPermissions ()

Parameter:

 [None]

Return value:

A 32-bit integer indicates permission flags. Please refer to PDF Reference for detailed

description, if the document is not protected, 0xffffffff will be returned.

ShowDocumentInfoDialog

Popup Document Properties Dialog.

Prototype:

void ShowDocumentInfoDialog()

Parameter:

 [None]

Return value:

 [None]

SetCurrentLanguage

The user interface of ActiveX can be switched to one of the 30+ languages dynamically.

This requires extra language file (in xml format) to be accompanied with the ActiveX. If you

want a specific language file, please contact us at sales@foxitsoftware.com.

Prototype:

void SetCurrentLanguage(short LanguageID);

mailto:sales@foxitsoftware.com

Programming Guide

33

Parameters:

LanguageID - Language identifier.

A value from 0 to 30 to represent different languages.

Return value:

 [None]

SetCurrentLanguageByString

The user interface of ActiveX can be switched to one of the 30+ languages dynamically.

This requires extra language file (in xml format) to be accompanied with the ActiveX. If you

want a specific language file, please contact us at sales@foxitsoftware.com.

Prototype:

void SetCurrentLanguageByString(BSTR FileName);

Parameters:

FileName - The name of the language file. Such as “lang_en_us.xml”.

Return value:

 [None]

SetCurrentWnd

By the use of this function, users can set the current instance when ActiveX runs in

Multi-instance.

Prototype:

void SetCurrentWnd(long hWnd);

Parameters:

hWnd - The HWND of a OCX instance.

Return value:

 [None]

SetLogFile

Users can call this function to set a log file in your application and each function you called

will be recorded to this log file.

Prototype:

BOOL SetLogFile(BSTR filepath);

Parameters:

filepath - the log file’s path.

Return value:

 A bool value specifies whether the log file is set.

IsDualPage(*)

 Check the type of the page.

Prototype:

BOOL IsDualPage(short pageIndex);

Parameters:

mailto:sales@foxitsoftware.com

Programming Guide

34

pageIndex - The page number of the document.

Return value:

 A bool value specifies whether the page is two layers.

 Two layers mean a page has an image with hidden text.

ExportPagesToPDF(*)

Export some pages in current document into a pdf file.

Prototype:

BOOL ExportPagesToPDF (BSTR lpszPDFFileName, BSTR lpszPageRangeString);

Parameters:

lpszPDFFileName - The file path to insert the page.

lpszPageRangeString - The page range string. Such as "0, 2, 3-5", please note that

"5-2" is invalid. In other words, the value before the dash

not allows being larger than the after one.

Return value:

A bool value specifies the pages have been exported.

GetBitmap(*)

Render contents in a page as a bitmap

Prototype:

long GetBitmap(short nPageIndex, long pixelWidth, long pixelHeight, float rectLeft,

float rectTop, loat rectRight, float rectBottom, long PixelFormat);

Parameters:

nPageIndex - The page number of the document.

pixelWidth - The width of the bitmap.

pixelHeight - The height of the bitmap.

rectLeft - Left pixel position of the display area in the device coordination.

rectTop - Top pixel position of the display area in the device coordination

rectRight - Right pixel position of the display area in the device coordination.

rectBottom - Bottom pixel position of the display area in the device coordination.

PixelFormat - The pixel format of the bitmap.

Return value:

 The handle of the bitmap.

GetPageHeight

Get page height

Prototype:

float GetPageHeight(short nPageIndex);

Parameters:

nPageIndex - The page number of the document.

Return value:

Page height (excluding non-displayable area) measured in points.

One point is 1/72 inch (around 0.3528 mm)

Programming Guide

35

GetPageWidth

Get page width

Prototype:

float GetPageWidth(short nPageIndex);

Parameters:

nPageIndex - The page number of the document.

Return value:

Page width (excluding non-displayable area) measured in points.

One point is 1/72 inch (around 0.3528 mm)

AboutBox

Popup the about box.

Prototype:

void AboutBox()

Parameters:

[None]

Return value:

[None]

PrintWithDialog

Display Windows dialog for sending print-outs.

Prototype:

void PrintWithDialog();

Parameters:

[None]

Return value:

[None]

UnLockActiveX

Unlock the Activex using license key received from Foxit Software Company.

Prototype:

void UnLockActiveX(BSTR lisence_id, BSTR unlock_code)

Parameters:

license_id - A string received from Foxit identifying the SDK licensee

unlock_code - A string received from Foxit to unlock the ActiveX

Return value:

[None]

Comment:

For evaluating ActiveX, you don’t need to call this function and the evaluation marks will be

shown on all rendered pages.

For paid ActiveX, you should call this function before calling any other ActiveX functions.

UnLockActiveXEx

Unlock the Activex using license key received from Foxit Software Company.

Programming Guide

36

Prototype:

void UnLockActiveXEx(BSTR strLicense)

Parameters:

strLicense - A string received from Foxit identifying the SDK license key

Return value:

[None]

Comment:

This function performs the same function as the UnlockActiveX.

SetUserPassword(*)

Set User Password for the current PDF file

Prototype:

BOOL SetUserPassword(LPCTSTR lpszNewValue)

Parameters:

lpszNewValue - Password string

Return value:

Returns True if successful, False otherwise.

SetUserPermission(*)

Set User Permission for the current PDF file.

Prototype:

BOOL SetUserPermission(long dwPermission)

Parameters:

dwPermission - returned User Permission flag.

Return value:

Returns True if successful, False otherwise.

SetOwnerPassword(*)

Set Owner Password for the current PDF file

Prototype:

BOOL SetOwnerPassword(LPCTSTR lpszNewValue)

Parameters:

lpszNewValue - Password string

Return value:

Returns True if successful, False otherwise.

SetContextMenuString

Set the string for right click contextual menu

Prototype:

Void SetContextMenuString(LPCTSTR string)

Parameters:

string - String containing the right click contextual menu data, such as

“a,b,c,d,e”. Call this function together with the OnContextMenuIndex

event. “a, b, c, d, e” represent distinct menu items.

Programming Guide

37

Return value:

[None]

SetPDFMeasureUnit

Set the measurement unit of PDF documents

Prototype:

 BOOL SetPDFMeasureUnit(short nType);

Parameters:

nType - Measurement unit: 0 = Point; 1 = Inch; 2 = Centimeter; 3: Pixel

Return value:

Returns True if successful, False otherwise.

GetCurrentWnd

Obtain the pointer to the current window

Prototype:

Long GetCurrentWnd();

Parameters:

[None]

Return value:

Returns the window point on success, NULL otherwise.

GetCtrlInstance

Obtain the handler to the Control Instance

Prototype:

Long GetCtrlInstance ();

Parameters:

[None]

Return value:

Returns the Control Instance handler on success, NULL otherwise.

Events

BeforeDraw

Triggered Before the painting of the viewer contents is about to begin.

Prototype:

Void BeforeDraw (long dc)

Parameters:

dc - Handle to a device context.

AfterDraw

Triggered After the painting of the viewer contents is completed.

Prototype:

Void AfterDraw (long dc)

Parameters:

Programming Guide

38

dc - Handle to a device context.

OnZoomChange

Triggered when you change the Zoomlevel property.

Prototype:

Void OnZoomChange ()

Parameters:

[None]

OnPageChange

Triggered when you change a page (move from one page to another).

Prototype:

Void OnPageChange ()

Parameters:

[None]

OnOpenPassword

Triggered when you try to open a PDF document which is password protected.

Prototype:

Void OnOpenPassword (BSTR* password, BOOL* cancel)

Parameters:

Password - Password for the PDF.

Cancel - When Cancel set False, It will trigger all the time,

until password is correct.

OnHyperLink (*)

Triggered when clicking on a hypertext,

Prototype:

Void OnHyperLink(BSTR linktype, BSTR linkdata, Link_Dest* dest, BOOL* cancel)

Parameters:

Linktype - A string containing information about the type of hyperlink.

linktype sting are:

GoTo moves to a different page on the current document, the linkdata is null string, dest

contain position information which the control is about to navigate.

GoToR moves to a different PDF file stored on the local disk, if the new window is required

for viewing the new document, the linkdata information contains the filename followed 1,

otherwise, followed 0. dest contain position information which the control is about to

navigate.

Launch launches an external application, if the new window is required for viewing the new

document, the linkdata information contains the filename followed by 1, otherwise, followed

by 0.

URI open an uri, linkdata contains the uri string.

Cancel - If cancel variable is set to true the control will not follow the

 hyperlink.

Programming Guide

39

linkData - A string contains additional information separated by character.

OnSearchProgress

Triggered when you search document,

Prototype:

Void OnSearchProgress (long pageNumber, long pageCount)

Parameters:

pageNumber - The page is currently being searched,

pageCount - The total number of pages .

OnOpenFile

Event triggered when file open operation fails

Prototype:

void OnOpenFile(short Error);

Parameters:

Error - returns the error code

OnFilePathInvalidate

Event triggered when file operation fails to validate

Prototype:

void OnFilePathInvalidate(BSTR WarnString);

Parameters:

WarnString - returnes the error message

OnShowSavePrompt

Event triggered when closing the modified file

Prototype:

void OnShowSavePrompt(BOOL* bShow, short * nResult);

Parameters:

bShow - the value indicate whether to show the default message box in ActiveX

nResult - the value indicate whether to save the modified file

OnOpenDocument

Triggered when you open a document.

Prototype:

Void OnOpenDocument (BSTR filepath)

Parameters:

Filepath - Path to the PDF file.

OnCloseDocument

Triggered when you close a document.

Prototype:

Void OnCloseDocument (BSTR filepath)

Parameters:

Programming Guide

40

 Filepath - Path to the PDF file.

OnDocumentChange

Triggered when the PDF document content change.

Prototype:

Void OnDocumentChange ()

Parameters:

[None]

CustomFileGetSize

Triggered when using OpenCustomFile method to open PDF document.

Prototype:

Void CustomFileGetSize (long* size)

Parameters:

size - [out] Pointer to number that will receive the PDF length.

Set it to PDF file length.

CustomFileGetBlock

Triggered when use OpenCustomFile method to open PDF document.

Prototype:

Void CustomFileGetBlock (long pos, long pBuf, long size)

Parameters:

pos - [in] Byte offset from beginning of the file.

pBuf - [out]Pointer to the buffer that will receive the pdf data.

Size - [in] the buffer size.

Comment:

Getting a block of data from specific position. Position is specified by byte offset from

beginning of the file. The position and size will never go out range of file length.

OnContextMenuIndex

Event triggered when clicking on an entry on the right click contextual menu. Use this event

together with the SetContextMenuString interface.

Prototype:

void OnContextMenuIndex(short nIndex);

Parameters:

nIndex - Index of the selected menu entry

OnClick

Triggered when the left button is clicked.

Prototype:

Void OnClick (long hWnd, long ClientX, long ClientY);

Parameters:

hWnd - The handle of this window.

ClientX - X coordinate in the ActiveX control window's client area.

Programming Guide

41

ClientY - Y coordinate in the ActiveX control window's client area.

OnDbClick

Triggered when the left button is double clicked.

Prototype:

Void OnDbClick (long hWnd, long ClientX, long ClientY);

Parameters:

hWnd - The handle of this window.

ClientX - X coordinate in the ActiveX control window's client area.

ClientY - Y coordinate in the ActiveX control window's client area.

OnRButtonClick

Event triggered when the right mouse button is clicked

Prototype:

void OnRButtonClick(long hWnd, long ClientX, long Client);

Parameters:

hWnd - The handle of this window.

ClientX - X coordinate in the ActiveX control window's client area.

ClientY - Y coordinate in the ActiveX control window's client area.

OnDownLoadFinish

Event triggered when downloading from the Internet succeeds.

Prototype:

void OnDownLoadFinish();

Parameters:

[None]

FormFieldError（#）

Event triggered when an error occurs while configuring a PDF form field.

Prototype:

Void FormFieldError(long nErrorCode);

Parameters:

nErrorCode - returns the error code when configuring the PDF form field.

Programming Guide

42

(#)PDFForm

Method

AddField

 Add a new form field

Prototype:

LPDISPATCH AddField(LPCTSTR bstrFieldName, LPCTSTR bstrFieldType,

long pageIndex, float left, float top, float right, float bottom);

Parameters:

bstrFieldName - The fully-qualified name of the field.

bstrFieldType - Field type for the newly created field.

Valid types are:

text

button

combobox

listbox

checkbox

radio button

pageIndex - The page number (zero-based).

left - The left coordinates of the field rectangle.

top - The top coordinates of the field rectangle.

right - The right coordinates of the field rectangle.

bottom - The bottom coordinates of the field rectangle.

Return value:

The newly-created field object.

Comment:

The field rectangle coordinate measured in rotated page space; that is, [0,0] is always

at the left bottom corner regardless of page rotation.

RemoveField

delete a specific form field

Prototype:

Void RemoveField (LPCTSTR bstrFieldName);

Parameters:

bstrFieldName - The fully-qualified name of the field to be removed If the field

has multiple child annotations, all of them are removed. If

multiple fields have the same name, all are removed.

Return value:

[None]

ExportToFDF

Export certain form elements into an FDF file.

Prototype:

Programming Guide

43

Void ExportToFDF (LPCTSTR bstrFullPath, BOOL bEmptyFields,

const VARIANT FAR& arrFields)

Parameters:

bstrFullPath - Full path of the exported FPF file

bEmptyFields - True to export ONLY elements specified in VARIANT&

arrField. False to export everything but the elements

specified in VARIANT& arrFields.

ArrFields - Form element array to be exported

Return value:

[None]

ImportFromFDF

Import from an FDF file

Prototype:

void ImportFormFromFDF(LPCTSTR bstrFullPath);

Parameters:

bstrFullPath - Fill path for the FDF file.

Return value:

 [None]

GetFieldByIndex

Obtain the pointer for a specific form field

Prototype:

LPDISPATCH GetFieldByIndex(long index)

Parameters:

index - Index of the form field

Return value:

On Success, returning the pointer to the form field, Null otherwise.

GetFieldByName

Obtain the pointer for a specific form field

Prototype:

LPDISPATCHs GetFieldByName(LPCTSTR bstrFieldName)

Parameters:

bstrFieldName - Full name of the form field

Return value:

On Success, returning the pointer to the form field, Null otherwise.

GetFieldsCount

Obtain the count of all form fields

Prototype:

long GetFieldsCount()

Parameters:

[None]

Programming Guide

44

Return value:

On Success, returning the number of form fields, -1 otherwise.

Programming Guide

45

PDFFormField

Properties

Alignment

Type:

String

Description:

Alignment of text inside a textfield（left，center，right）

Comment:

For text field only.

BorderStyle

Type:

String

Description:

Style of the form field border

Comment:

For all.

The border style can be set to: 1）solid 2）dashed 3）beveled 4）inset 5）underline

BorderWidth

Type:

short

Description:

Width of the form field

Comment:

For all

ButtonLayout

Type:

short

Description:

The layout appearance of a button. Valid values include:

0 - Text only; the button has a caption but no icon.

1 - Icon only; the button has an icon but no caption.

2 - Icon over text; the icon should appear on top of the caption.

3 - Text over icon; the text should appear on top of the icon.

4 - Icon then text; the icon should appear to the left of the caption.

5 - Text then icon; the icon should appear to the right of the caption.

6 - Text over icon; the text should be overlaid on top of the icon.

Comment:

For all

Programming Guide

46

CalcOrderIndex

Type:

short

Description:

Index of the current form field

Comment:

For all

CharLimit

Type:

short

Description:

Limit of the number of characters in a textfield.

Comment:

Text Field Only

DefaultValue

Type:

String

Description:

Default value of the form field

Comment:

For all

IsEditable

Type:

Boolean

Description:

Indicate if the Combo Box is editable

Comment:

Combo Box Only

Behavior

Type:

String

Description:

None, Invert, Outline, Push

N (None) No highlighting.

I (Invert) Invert the contents of the annotation rectangle.

O (Outline) Invert the annotation’s border.

P (Push) Display the annotation as if it were being pushed below the surface of

the page.

IsHidden

Programming Guide

47

Type:

Boolean

Description:

Whether the form field is hidden

Comment:

For all

IsMultiline

Type:

Boolean

Description:

Whether a textfield is multi-line or single-line.

Comment:

Text field only

IsPassword

Type:

Boolean

Description:

Whether to mask the input as password input.

Comment:

Text Field only.

IsReadOnly

Type:

Boolean

Description:

Whether to set a form field as read only.

Comment:

For All

IsRequired

Type:

Boolean

Description:

Whether a field has to be non-empty

Comment:

For Combo box, Radio button, Text Field

Name

Type:

String

Description:

Name of the current form field

Programming Guide

48

Comment:

Read only，For all

NoViewFlag

Type:

Boolean

Description:

Whether or not to show the form element. 1 = show; 0 = hidden.

Comment:

For all

PrintFlag

Type:

Boolean

Description:

Whether or not to include form element in print-outs. 1 = show; 0 = hidden.

Comment:

For all

Style

Type:

CString

Description:

Set the shape of checkbox and radio button to：

1）check，2) cross, 3) diamond, 4) circle, 5) star, 6) square

Comment:

For checkbox，radio button

TextFont

Type:

String

Description:

Font（Reference 1.7 416）

Can be set as:

Courier

Courier-Bold

Courier-Oblique

Courier-BoldOblique

Helvetica

Helvetica-Bold

Helvetica-Oblique

Helvetica-BoldOblique

Symbol

Times-Roman

Programming Guide

49

Times-Bold

Times-Italic

Times-BoldItalic

ZapfDingbats

Comment:

For all except for Check box, radio box

TextSize

Type:

Short

Description:

Size of the text in form fields

Comment:

For all except for Check box, radio box

Type

Type:

String

Description:

Type of the Form

Comment:

For all

It can be set as: text, button, combobox, listbox, checkbox, radiobutton

Value

Type:

String

Description:

The current value

Comment:

Form elements having this property:

1）Text field 2）combobox 3）radio button 4）checkbox <Yes&Off> 5）Listbox

Tooltip

Type:

String

Description:

Displayed tooltip

Comment:

For all

Orientation

Type:

Short

Programming Guide

50

Description:

The text rotation of the form

Comment:

For all

Method

PopulateListOrComboBox

Assign values to entries within a Listbox or Combobox

Prototype:

Void PopulateListOrComboBox (const VARIANT& arrItems,

const VARIANT& arrExportVal);

Parameter:

arrItem - An array of strings, with each element representing an

item name.

arrExportVal - An array of strings, the same size as the first parameter, with

each element representing an export value.

Return Value:

[None]

SetBackgroundColor

Set the background color of a form field

Prototype:

Void SetBackgroundColor (LPCTSTR bstrColorSpace, float redC, float greenM,

float blueY, float AlphaK);

Parameter:

bstrColorSpace - Can be one of the following: transparent, gray, RGB or CMYK

color space. Use T, G, RGB and CMYK for each.

For T and G, redC is required; For RGB, redC, greenM and

blueY are required; For CMYK, redC, greenM, blueY and

AlphaK are required.

redC, greenM and blueY are values from 0 to 1.

Return value:

[None]

SetBorderColor

Set the border color.

Prototype:

void SetBorderColor (LPCTSTR bstrColorSpace, float redC, float greenM,float

blueY, float AlphaK);

Parameter:

bstrColorSpace - Can be one of the following: transparent, gray, RGB or CMYK

color space. Use T, G, RGB and CMYK for each.

For T and G, redC is required; For RGB, redC, greenM and

Programming Guide

51

blueY are required; For CMYK, redC, greenM, blueY and

AlphaK are required.

redC, greenM and blueY are values from 0 to 1.

Return value：

[None]

SetForegroundColor

Set the foreground color

Prototype:

Void SetForegroundColor (LPCTSTR bstrColorSpace, float redC, float greenM,

float blueY, float AlphaK);

Parameter:

bstrColorSpace - Can be one of the following: transparent, gray, RGB or CMYK

color space. Use T, G, RGB and CMYK for each.

For T and G, redC is required; For RGB, redC, greenM and

blueY are required; For CMYK, redC, greenM, blueY and

AlphaK are required.

redC, greenM and blueY are values from 0 to 1.

Return value:

[None]

SetButtonCaption

Set the text displayed on a button

Prototype:

void SetButtonCaption (LPCTSTR bstrFace, LPCTSTR bstrCaption);

Parameter:

bstrFace - A string that specifies the face for which the caption will be

used.

Valid strings include:

N — Normal appearance

D — Down appearance

R — Appearance for rollover

bstrCaption - The caption for the button.

Return value:

[None]

SetButtonIcon

Set the icon for a button

Prototype:

Void SetButtonIcon (LPCTSTR bstrFace, LPCTSTR bstrFilePath);

Parameters:

bstrFace - A string that specifies the face for which the caption will be used.

Valid strings include:

N — Normal appearance

Programming Guide

52

D — Down appearance

R — Appearance for rollover

bstrFilePath - The full path of the image file to be used as the source of the

appearance.

Return Value:

[None]

SetExportValues

When Radio Button and Checkbox are to be exported, set the value to export for

different selection (Selected, un-selected, checked, un-checked, etc)

Prototype:

void SetExportValues (const VARIANT& arrExportVal);

Parameters:

arrExportVal - Array of the export values

Return Value:

[None]

SetJavaScriptAction

Set the action of JavaScript

Ptototype:

Void SetJavaScriptAction (LPCTSTR bstrTrigger, LPCTSTRbstrJavaScript);

Parameters:

bstrTrigger - A string that specifies the trigger for the action.

Valid strings include:

up

down

enter

exit

calculate

validate

format

keystroke

bstrJavaScript - The script itself.

Return value:

[None]

SetResetFormAction

Set the action of the Reset form field

Prototype:

void SetResetFormAction (LPCTSTR bstrTrigger, long bFlags, const VARIANT&

arrFields);

Parameters:

bstrTrigger - A string that specifies which trigger is used for the action.

Valid strings include:

Programming Guide

53

up — Mouse up

down — Mouse down

enter — Mouse enter

exit — Mouse exit

bFlags - A collection of flags that define various characteristics of the action.

arrFields - Form element array to be exported

Return value:

[None]

SetSubmitFormAction

Set the action for the Submit form field

Prototype:

Void SetSubmitFormAction (LPCTSTR bstrTrigger, LPCTSTR bstrURL, long

bFlags, const VARIANT& arrFields);

Parameters:

bstrTrigger - A string that specifies which trigger is used for the action.

Valid strings include:

up - Mouse up

down - Mouse down

enter -Mouse enter

exit - Mouse exit

bstrURL - A string containing the URL.

bFlags - A collection of flags that define various characteristics of the action.

arrFields - Form element array to be submitted

Return value:

[None]

Programming Guide

54

PDFPrinter

With IPDFPrinter interface you can control the printer and send print-outs.

Properties

PrinterName

Type:

 BSTR

Description:

Set the printer name that will be used for print-outs.

printerRangeMode

Type:

PrinterRangeMode

Description:

Set the printer name that will be used for print-outs.

 Set the print range, can be set to :

 PRINT_RANGE_ALL = 0,

 PRINT_RANGE_CURRENT_VIEW = 1,

 PRINT_RANGE_CURRENT_PAGE = 2,

 PRINT_RANGE_SELECTED = 3,

printerRangeFrom

Type:

short

Description:

Specify the first page number to be printed.

You must first set the PrinterRangeMode to PRINT_RANGE_SELECTED

printerRangeTo

Type:

short

Description:

Specify the last page number to be printed.

You must first set the PrinterRangeMode to PRINT_RANGE_SELECTED

numOfCopies

Type:

short

Description:

Specify the number of copies to be printed.

Scaling

Type:

Programming Guide

55

short

Description:

Set the scaling of in the print dialog.

AutoRotate

Type:

boolean

Description:

Set the auto-rotate parameter in the print dialog

AutoCenter

Type:

boolean

Description:

Set whether or not to auto-center when printing. 1 = auto-center; 0 = no auto-center

Collate

Type:

boolean

Description:

Set whether or not to check the Collate option in print dialog. 1 = Collate checked; 0 =

not checked.

Rotation

Type:

short

Description:

Set whether or not to rotate the document when printing.

RangeSubset

Type:

short

Description:

Set whether or not to include Subset when printing.

ReversePage

Type:

boolean

Description:

Set whether or not to print document in reverse order.

PageBorder

Type:

boolean

Programming Guide

56

Description:

Set whether or not to print out page boarders.

Methods

PrintWithDialog

Display Windows dialog for sending print-outs.

Prototype:

void PrintWithDialog();

Parameters:

[None]

Return value:

[None]

PrintQuiet

Send the printouts to the specified printer without displaying the print dialog.

Prototype:

void PrintQuiet();

Parameters:

[None]

Return value:

[None]

SetPaperSize

Set the paper size for the selected printer, for available paper sizes values print

please read Windows SDK documentation.

Prototype:

void SetPaperSize (long paperSize);

Parameters:

paperSize - Available paper sizes.

Return value:

[None]

Programming Guide

57

PDFOutline

Give the PDF outline object information.

Methods

NavigateOutline

Navigate to the destination specified by the outline object.

Prototype:

void NavigateOutline ();

Parameters:

[None]

Return value:

[None]

GetOutlineTitle

Get the title of the outline object.

Prototype:

BSTR GetOutlineTitle()

Parameters:

[None]

Return value:

Return the title of the outline object.

GetOutLineTitle2

Get the title of the outline object as a variant.

Prototype:

VARIANT GetOutLineTitle2 ()

Parameters:

[None]

Return value:

Return the title of the outline object as a variant

Programming Guide

58

PDFDocumentInfo

Information regarding the document properties.

Properties

Author

Type:

BSTR

Description:

Author of the PDF document.

Subject

Type:

BSTR

Description:

Subject of the PDF document.

CreatedDate

Type:

BSTR

Description:

Creation date of the PDF document.

ModifiedDate

Type:

BSTR

Description:

Modified date of the PDF document.

Keywords

Type:

BSTR

Description:

Keywords for the PDF document.

Creator

Type:

BSTR

Description:

Creator of the PDF document.

Producer

Type:

BSTR

Programming Guide

59

Description:

Producer of the PDF document.

Title

Type:

BSTR

Description:

Title of the PDF document.

Programming Guide

60

FindResult

FindResult class if an occurrence is found.

Methods

GetFindPageNum

Get the page number.

Prototype:

long GetFindPageNum();

Parameters:

[None]

Return value:

The page index.

GetFindFileName

Get the find file name.

Prototype:

BSTR GetFindFileName();

Parameters:

[None]

Return value:

The file name.

	Contents
	Overview
	Tutorials
	Open a PDF File
	Go to a specific page
	Zoom a page
	Rotate a page
	Print a PDF document
	Hide or show UI elements
	Iterate the whole outline tree
	Search a PDF document
	Annotations (*)
	#Form Application

	FoxitReaderSDK control
	Properties
	FilePath
	Password
	PageCount
	CurPage
	Rotate
	Zoomlevel
	CurrentTool
	Printer
	bHasFormFields (*)
	DocumentInfo
	bHighlightFormFields (*)
	FormFieldsHighlightAlpha (*)
	FormFieldsHighlightColor (*)
	ActiveXVersion

	Methods
	Open and close PDF File
	Viewing
	Navigation
	Search
	Outline
	Save
	Annotation
	Form
	Drawing
	Running Javascript
	HyperLink
	Others

	Events

	(#)PDFForm
	Method

	PDFFormField
	Properties
	Method

	PDFPrinter
	Properties
	Methods

	PDFOutline
	Methods

	PDFDocumentInfo
	Properties

	FindResult
	Methods

